Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology 58, 5–17 (2015).
Google Scholar
Gueneli, N. et al. 1.1-Billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers. Proc. Natl Acad. Sci. USA 115, E6978–E6986 (2018).
Google Scholar
Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).
Google Scholar
Bloch, K. in Blondes in Venetian Paintings, the Nine-Banded Armadillo, and Other Essays in Biochemistry 14–36 (Yale Univ. Press, 1994).
Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6, a016139 (2014).
Google Scholar
Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).
Google Scholar
Chernikova, D., Motamedi, S., Csuros, M., Koonin, E. & Rogozin, I. A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes. Biol. Direct 6, 26 (2011).
Google Scholar
Knoll, A. H. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016121 (2014).
Google Scholar
Javaux, E. & Knoll, A. Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. J. Palaeontol. 91, 199–229 (2017).
Google Scholar
Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000).
Google Scholar
Tang, Q., Pang, K., Yuan, X. & Xiao, S. A one-billion-year-old multicellular chlorophyte. Nat. Ecol. Evol. 4, 543–549 (2020).
Google Scholar
Loron, C. C. et al. Early fungi from the Proterozoic era in Arctic Canada. Nature 570, 232–235 (2019).
Google Scholar
Porter, S. M. & Knoll, H. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26, 360–385 (2000).
Google Scholar
Welander, P. V. Deciphering the evolutionary history of microbial cyclic triterpenoids. Free Radical Biol. Med. 140, 270–278 (2019).
Google Scholar
Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017).
Google Scholar
Zumberge, J. A., Rocher, D. & Love, G. D. Free and kerogen-bound biomarkers from late Tonian sedimentary rocks record abundant eukaryotes in mid-Neoproterozoic marine communities. Geobiology 18, 326–347 (2019).
Google Scholar
Desmond, E. & Gribaldo, S. Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol. Evol. 1, 364–381 (2009).
Google Scholar
Grantham, P. J. & Wakefield, L. L. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Org. Geochem. 12, 61–73 (1988).
Google Scholar
Hoshino, Y. et al. Cryogenian evolution of stigmasteroid biosynthesis. Sci. Adv. 3, e1700887 (2017).
Google Scholar
Pawlowska, M. M., Butterfield, N. J. & Brocks, J. J. Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 41, 103–106 (2013).
Google Scholar
Porter, S. M., Agić, H. & Riedman, L. A. Anoxic ecosystems and early eukaryotes. Emerg. Top. Life Sci. 2, 299–309 (2018).
Google Scholar
Nguyen, K. et al. Absence of biomarker evidence for early eukaryotic life from the Mesoproterozoic Roper Group: Searching across a marine redox gradient in mid-Proterozoic habitability. Geobiology 17, 247–260 (2019).
Google Scholar
Porter, S. M. Insights into eukaryogenesis from the fossil record. Interface Focus 10, 20190105 (2020).
Google Scholar
Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).
Google Scholar
Butterfield, N. J. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7, 1–7 (2009).
Google Scholar
Brocks, J. J. The transition from a cyanobacterial to algal world and the emergence of animals. Emerg. Top. Life Sci. 2, 181–190 (2018).
Google Scholar
Jarrett, A. J. M. et al. Microbial assemblage and paleoenvironmental reconstruction of the 1.3 Ga Velkerri Formation, McArthur Basin, northern Australia. Geobiology 17, 360–380 (2019).
Google Scholar
Bloch, K. E. Sterol structure and membrane function. CRC Crit. Rev. Biochem. 14, 47–92 (1983).
Google Scholar
Dufourc, E. J. Sterols and membrane dynamics. J. Chem. Biol. 1, 63–77 (2008).
Google Scholar
Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Paleoproterozoic sea. Nature 437, 866–870 (2005).
Google Scholar
Summons, R. E. et al. Distinctive hydrocarbon biomarkers from fossiliferous sediments of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochim. Cosmochim. Acta 52, 2625–2637 (1988).
Google Scholar
van Maldegem, L. M. et al. Geological alteration of Precambrian steroids mimics early animal signatures. Nat. Ecol. Evol. 5, 169–173 (2021).
Google Scholar
Hoshino, Y. & Gaucher, E. A. Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proc. Natl Acad. Sci. USA 118, e2101276118 (2021).
Google Scholar
Gold, D. A., Caron, A., Fournier, G. P. & Summons, R. E. Paleoproterozoic sterol biosynthesis and the rise of oxygen. Nature 543, 420–423 (2017).
Google Scholar
Wei, J. H., Yin, X. & Welander, P. V. Sterol synthesis in diverse bacteria. Front Microbiol 7, 990–990 (2016).
Google Scholar
Zhang, X., Paoletti, M., Izon, G., Fournier, G. & Summons, R. Isotopic evidence of photoheterotrophy in Palaeoproterozoic Chlorobi. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2444442/v1 (2023).
Knoll, A. H., Javaux, E., Hewitt, D. & Cohen, P. Eukaryotic organisms in Proterozoic oceans. Phil. Trans. R. Soc. B 361, 1023–1038 (2006).
Google Scholar
Anderson, R. H. et al. Sterols lower energetic barriers of membrane bending and fission necessary for efficient clathrin-mediated endocytosis. Cell Rep. 37, 110008 (2021).
Google Scholar
Michellod, D. et al. De novo phytosterol synthesis in animals. Science 380, 520–526 (2023).
Google Scholar
Gold, D. A. The slow rise of complex life as revealed through biomarker genetics. Emerg. Top. Life Sci. 2, 191–199 (2018).
Google Scholar
Koumandou, V. L. et al. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 48, 373–396 (2013).
Google Scholar
Dupont, S., Beney, L., Ferreira, T. & Gervais, P. Nature of sterols affects plasma membrane behavior and yeast survival during dehydration. Biochim. Biophys. Acta 1808, 1520–1528 (2011).
Google Scholar
Rogowska, A. & Szakiel, A. The role of sterols in plant response to abiotic stress. Phytochemistry 19, 1525–1538 (2020).
Google Scholar
Santalova, E. A. et al. Sterols from six marine sponges. Biochem. Syst. Ecol. 32, 153 (2004).
Google Scholar
Tillmann, U. Kill and eat your predator: a winning strategy of the planktonic flagellate Prymnesium parvum. Aquat. Microb. Ecol. 32, 73–84 (2003).
Google Scholar
Brocks, J. J. et al. Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14, 129–149 (2016).
Google Scholar
Galea, A. M. & Brown, A. J. Special relationship between sterols and oxygen: were sterols an adaptation to aerobic life? Free Radical Biol. Med. 47, 880 (2009).
Google Scholar
Canfield, D. E. Oxygen—A Four Billion Year History (Princeton Univ. Press, 2014).
Planavsky, N. J. et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014).
Google Scholar
Mentel, M. & Martin, W. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Phil. Trans. R. Soc. B 363, 2717–2729 (2008).
Google Scholar
Mills, D. B. et al. Eukaryogenesis and oxygen in Earth history. Nat. Ecol. Evol. 6, 520–532 (2022).
Google Scholar
Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).
Google Scholar
Hoffman, P. F. et al. Snowball Earth climate dynamics and Cryogenian geology–geobiology.Sci. Adv. 3, e1600983 (2017).
Google Scholar
Porter, S. M., Meisterfeld, R. & Knoll, A. H. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. J. Paleontol. 77, 409–429 (2003).
Google Scholar
Gibson, T. M. et al. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138 (2017).
Google Scholar
Butterfield, N. J., Knoll, A. H. & Swett, K. A bangiophyte red alga from the Proterozoic of arctic Canada. Science 250, 104–107 (1990).
Google Scholar
Butterfield, N. J. Proterozoic photosynthesis—a critical review. Palaeontology 58, 953–972 (2015).
Google Scholar
Beghin, J. et al. Microfossils from the late Mesoproterozoic–early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa. Precambrian Res. 291, 63–82 (2017).
Google Scholar
French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015).
Google Scholar
Jarrett, A., Schinteie, R., Hope, J. M. & Brocks, J. J. Micro-ablation, a new technique to remove drilling fluids and other contaminants from fragmented and fissile rock material. Org. Geochem. 61, 57–65 (2013).
Google Scholar
Brocks, J. J. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: live-oil escape or fingerprint of contamination? Geochim. Cosmochim. Acta 75, 3196–3213 (2011).
Google Scholar
Schinteie, R. et al. Impact of drill core contamination on compound-specific carbon and hydrogen isotopic signatures. Org. Geochem. 128, 161–171 (2019).
Google Scholar
Schinteie, R. & Brocks, J. J. Evidence for ancient halophiles? Testing biomarker syngeneity of evaporites from Neoproterozoic and Cambrian strata. Org. Geochem. 72, 46–58 (2014).
Google Scholar
Brocks, J. J., Grosjean, E. & Logan, G. A. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochim. Cosmochim. Acta 72, 871–888 (2008).
Google Scholar
Brocks, J. J. & Hope, J. M. Tailing of chromatographic peaks in GC–MS caused by interaction of halogenated solvents with the ion source. J. Chromatogr. Sci. 52, 471–475 (2014).
Google Scholar
Holba, A. G. et al. Application of tetracyclic polyprenoids as indicators of input from fresh-brackish water environments. Org. Geochem. 34, 441–469 (2003).
Google Scholar
Peters, K. E., Walters, C. C. & Moldowan, J. M. The Biomarker Guide Vol. 2, 2nd edn (Cambridge Univ. Press, 2004).
Wang, X. et al. Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting. Am. J. Sci. 317, 861–900 (2017).
Google Scholar
Zhang, S. et al. Sufficient oxygen for animal respiration 1,400 million years ago. Proc. Natl Acad. Sci. USA 113, 1731–1736 (2016).
Google Scholar